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Abstract

Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to
support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause
negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of
milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to
improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of
excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important
start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared
with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal
immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have
essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in
starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk
oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses
on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through
modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
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Introduction
Swine industry has been facing with numerous chal-
lenges, including outbreaks of epidemic enteric diseases
and removal of antimicrobial growth promoters in feeds
which directly affect the efficiency and profitability of
pig production. As a result, there have been increased ef-
forts to investigate and find alternative nutraceuticals re-
placing the use of antibiotics to support intestinal health
and growth of nursery pigs [1–3]. Intestinal challenges
to nursery pigs are primarily caused by their immature
intestinal system, which would hard to allow the feeds
containing allergenic compounds from plant-based pro-
tein supplements as well as microbial infections [4, 5]. In
general, sow milk is a natural source of nutrients for

sucking piglets during lactation whereas the milk co-
products have been broadly used in milk replacers, creep
feeds, and early weaner feeds. Milk coproducts have
great potentials in feeds for nursery pigs because nutri-
ents in milk are well balanced and highly digestible, sup-
porting the intestinal health and growth of nursery pigs
[6–8]. It has also been well documented that milk carbo-
hydrates are most effectively utilized by nursery pigs
providing energy and functional properties to support
their growth and health [7, 9, 10].
Milk coproducts contain lactose as the major carbohy-

drate that is highly digestible compared with other
carbohydrate sources in cereal grains for nursery pigs
[11–13]. The main reason for high lactose digestibility
would be related to early adaptation of their digestive
system to maintain high lactase activity in the intestinal
epithelial cells [14, 15]. In general, milk coproducts have
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been broadly used to supply lactose in nursery feeds.
However, feeding lactose over a tolerance level would
cause severe digestive problems from massive lactose
fermentation in the intestine, causing negative impacts
on intestinal development [16–18]. There is still a lack
of updated information on the recommendation levels of
lactose for nursery pigs with the changes in lean gain po-
tential, health status, and weaning ages. Previous studies
investigating an optimal lactose level in nursery feeds
have shown significant variations due to changes in the
genetics of pigs and management environments. How-
ever, one of the consistent results is that optimal lactose
levels in feeds decrease as a pig grows [7, 10, 19].
Recent evidence suggests that animal milk and milk

coproducts contain various forms of milk oligosaccha-
rides with beneficial prebiotic effects on intestinal health
and brain development in infants [20–23]. Milk oligosac-
charides are non-digestible carbohydrates and the third-
abundant-nutrients next to lactose and fat in animal
milk [24]. These milk oligosaccharides are largely diverse
and complex with their structure compared with con-
ventional prebiotics such as galacto-oligosaccharides,
xylo-oligosaccharides, or fructo-oligosaccharides which
are current used in infant formula [25–28]. Once
ingested, milk oligosaccharides would not be absorbed
but pass through the gastrointestinal tract (GIT) and
then be utilized for fermentation by intestinal microbes
resulting in an increased proportion of potentially bene-
ficial bacteria, including Bifidobacterium and Lactobacil-
lus sp. [29–31]. Interestingly, a minimal amount of milk
oligosaccharides could be absorbed into systemic circu-
lation in young animals, possibly affecting the activation
of the immune system [32–34]. Due to the diversity and
specific structures of milk oligosaccharides, their mode
of action for beneficial effects on young animals may be
distinctively different from that of conventional
prebiotics.
Therefore, there is growing interest in finding effective

feeding values of milk carbohydrates for their nutritional
and functional roles in the intestinal development and
health of nursery pigs. This review focus on the func-
tional role and feeding application of milk carbohydrates
in modulating the intestinal health of nursery pigs.

Lactose
Lactose is the most abundant carbohydrate in milk,
which consists of galactose and glucose by β-glycosidic
linkage. It can be hydrolyzed by lactase (β-D-galactosi-
dase) secreted from epithelial cells lining villi on the
small intestine. After the hydrolysis of lactose, galactose
and glucose are transported to central circulatory system
via Na+-D-glucose cotransporter 1 (SGLT1) and glucose
transporter 2 (GLUT2) by facilitated diffusion across
brush border and basolateral membranes of enterocytes

in the intestine [35]. Once absorbed, these monosaccha-
rides are utilized as carbon donors to generate adenosine
triphosphate (ATP) in energy metabolism and assist
amino acids (AA) synthesis. In particular, galactose
would be converted to glucose-1-phosphate through the
Leloir pathway, and then it could be used in the cellular
respiration process to produce energy [36]. Despite play-
ing such a direct role as an energy source, lactose could
also be involved in AA synthesis and other potential car-
bon chains indirectly contributing to growth [37–39].
Although pigs have a digestive system with a relatively

high tolerance level of lactose compared with other spe-
cies [40], milk coproducts are minimally used in swine
feeds due to the high costs compared with the use of
other carbohydrates from cereal grains. Thus, feeding a
proper amount of lactose in feeds is important for suc-
cessful pig production, balancing the feed costs and
growth of nursery pigs. Nursing piglets can get lactose
from sow milk. Lactose composition in sow milk is
about 3% (or 13% dry matter (DM) basis) in the colos-
trum and about 5% (27% DM basis) in the mature milk
[9, 11, 41]. The digestive system of nursing piglets,
therefore, would maintain high lactase activity [14, 15,
42]. Thus, the use of milk coproducts has been a stand-
ard practice to supply effective carbohydrate sources in
nursery feeds to improve the growth performance of
nursery pigs. However, the suggested optimal inclusion
levels of lactose for maximal growth efficiency vary de-
pending on studies. Therefore, a depth review is needed
to understand the variability and to provide comprehen-
sive data analysis.

Meta-analysis to estimate lactose requirements for
nursery pigs
In this review, a meta-analysis was conducted to deter-
mine the optimal dietary need of lactose for nursery pigs
based on their growth performance. Data from published
articles were obtained from public databases including
PubMed, Science Direct, and Web of Science with cri-
teria for filtering. For the criteria, all data from articles
consisted of peer-reviewed publications. Secondly, data
were obtained from animal experiments testing the ef-
fects of different levels of crystalline lactose or milk co-
products as a source of lactose. Lastly, all of the data for
growth parameters, including BW, ADG, ADFI, and G:F
were obtained or could be calculated from the data.
The comprehensive data provided in this review was

obtained from 17 peer-reviewed publications and uti-
lized for the meta-analysis [7, 8, 12, 19, 43–55]. The data
were divided into three groups based on BW of pigs (for
5 to 7 kg BW, published in 10 papers with the 14 experi-
ments; for 7 to 11 kg BW, published in 14 papers with
23 experiments; for 11 to 25 kg BW, published in 12 pa-
pers with 15 experiments). Daily lactose intake was
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calculated using average daily feed intake (g/d) multi-
plied by the lactose composition in each experimental
diet. For statistical analysis, the inclusion level and daily
intake of lactose on growth response were evaluated
with nonlinear models using the Proc NLMIXED in SAS
(SAS. Inc., Cary, USA). The method of nonlinear least
squares used to fit the model: Y = a + b (R-x) + e. Where
‘Y’ is the response of feed efficiency, ‘a’ is the ordinate of
the breakpoint, ‘b’ is the slope of the line when x < R, ‘x’
is if the inclusion level or average daily lactose intake, ‘R’
is the breakpoint, ‘e’ is a residual error among experi-
ments, and ‘(R − x)’ is defined as zero when x ≥ R. Using
a broken-line analysis, optimal levels of nutrient for the
parameters of interest can be obtained [7, 56, 57]. Re-
gressions were obtained between lactose levels (%) or in-
take (g/d) in nursery feeds and the feed efficiency of
pigs. Optimal levels (breakpoints) of lactose to maximize
feed efficiency were obtained at 20.0% in feeds for 5 to 7
kg body weight (BW) and 13.0% in feeds for 7 to 11 kg
BW of nursery pigs (Fig. 1) or at 46 g/d lactose intake
for 5 to 7 kg BW and 57 g/d lactose intake for 7 to 11 kg
BW of pigs (Fig. 2), respectively. As expected, optimal
inclusion levels of lactose for maximal feed efficiency de-
creased, whereas optimal daily lactose intakes were in-
creased as pig BW increased. A recent review by Zhao
et al. [58] demonstrated that nursery pigs need 20% lac-
tose during d 0 to 7 after weaning, 15% lactose during d
7 to 14, and 0% lactose during d 14 to 35. Following
these estimations, a previous study by Jang et al. [7]
demonstrated that the growth responses to lactose sup-
plementation was gradually decreased as pigs increased
with age.

Milk oligosaccharides
Milk oligosaccharides are the third most abundant nutri-
ent in mammalian milk after lactose and lipids [5, 43].
Milk oligosaccharides are composed of the five mono-
saccharides fucose, glucose, galactose, N-
acetylglucosamine, and sialic acid [59, 60]. It has also
been reported that milk oligosaccharides have over 200
distinct structures with high complexity due to branches
and elongated oligosaccharide structures [32]. These
milk oligosaccharides contain core units having a forma-
tion of a β1–4 glycosidic linkage between galactose and
glucose, and it can be further extended via β1–3 or β1–6
linkages with additional galactose or N-
acetylglucosamine [61]. The core units in milk oligosac-
charides could be linear or branched and it can be fur-
ther linked with fucoses and/or sialic acid residues [61].
There are three major types of oligosaccharides found in
milk such as neutral, neutral N-containing, and acidic
oligosaccharides and classified based on the residue lo-
cated at the terminal position among fucose (neutral oli-
gosaccharides), N-acetylglucosamine (neutral N-

containing oligosaccharides), and sialic acid (acidic oli-
gosaccharides) [60].
The diversity and composition of oligosaccharides in

milk are widely variable between species or period of
lactation. Human milk contains the highest abundance
and structural complexity, with about 20 to 25 g/L in
colostrum and 5 to 20 g/L in subsequent mature milk
[32]. Bode [21] described that the concentration and
complexity of milk oligosaccharides in human milk have
been investigated and appear to be 10 to 100 folds
higher than the milk of farm animals such as cows,
goats, and pigs. The concentration of bovine milk oligo-
saccharides are about 0.7 to 1.2 g/L in colostrum and
0.05 to 0.10 g/L in the mature milk, with about 100 iden-
tified structures, or about 15%, overlapping with human
milk oligosaccharides. Accordingly, bovine milk oligo-
saccharides could serve as an excellent potential source
for commercially available and cost-effective milk oligo-
saccharides in animal production compared with milk
oligosaccharides from other species [60]. Dairy produc-
tion and processing are equipped with sophisticated fil-
tration systems to separate valued milk components
resulting in whey permeate with high level lactose and
oligosaccharides that can provide nutritional and health
benefits to animal species of interest [60, 62]. Thus, nur-
sery pigs could potentially obtain benefits from milk oli-
gosaccharides through supplementation of whey
permeate. Jang et al. [7] found that whey permeate con-
tained about 0.4% milk oligosaccharides and showed
positive effects on the intestinal health of nursery pigs
when whey permeate was supplemented into their feeds.
In contrast, little is known about porcine milk oligosac-
charides in regards to their concentration and structural
characterization in sow milk compared with human and
bovine milks. There are increasing attention to the in-
vestigation of the functional properties of porcine milk
oligosaccharides and their effects on the intestinal health
and development of nursing piglets. Upon farrowing, in-
testine of piglets would initially face with lactose and
milk oligosaccharides from sow milk. Previous studies
have shown that the profile of oligosaccharides in por-
cine milk would have a higher similarity to human milk
compared with bovine milk [63, 64]. This may help to
define specific benefits of milk oligosaccharides to im-
prove intestinal health and growth of nursing piglets
during lactation.
Mammalian animals do not have specific enzymes to

hydrolyze the milk oligosaccharides. However, milk oli-
gosaccharides received significant attentions for their
functional benefits on intestinal development and health
in animals (Table 1). Milk oligosaccharides are mostly
considered as prebiotics that was defined for the first
time in 1995 as “a non-digestible food ingredient that
beneficially affects the host by selectively stimulating the
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growth and/or activity of one or a limited number of
bacteria in the colon, and thus improves host health”
[65]. According to the International Scientific Associ-
ation of Probiotics and Prebiotics (ISAPP) [66], milk oli-
gosaccharides are also dietary prebiotics, because milk
oligosaccharides are also selectively utilized by host mi-
croorganisms providing health benefits. Furthermore,
milk oligosaccharides are also meeting the other criteria
for prebiotics as 1) resistance to gastric pH acidity, ab-
sorption, and hydrolysis of mammalian enzymes, 2) fer-
mentable by intestinal microflora, 3) selectively
interaction with intestinal microbiota such as Lactobacil-
lus and Bifidobacterium in the small intestine and colon
[66–68]. Milk oligosaccharides can also directly or indir-
ectly interact with enterocytes, leading to host protection

by improving intestinal health [21]. Milk oligosaccha-
rides can also protect the intestine from damages by in-
creasing enterocyte proliferation [69, 70]. Interestingly,
once arrived into the intestine, milk oligosaccharides
would possibly bind to immune receptors on the innate
immune cells or enterocytes, leading to the immune-
modulatory and protective functions in the animal body
[72, 73]. In addition, the small portion of milk oligosac-
charides can also be absorbed into the enterocytes of in-
fants by active transport, and it could possibly affect the
systemic immune response [71]. Therefore, milk oligo-
saccharides provide a spectrum of protective and
immune-modulatory functions mediated either by their
prebiotic role in enriching specific beneficial microbiota
or by direct interaction with immune cells.

Fig. 1 Changes in G:F of nursery pigs fed diets by inclusion level of lactose in diets during 5 to 7 kg (A) and 7 to 11 kg (B) BW using a broken-
line analysis. The meta-analysis is conducted by Proc NLMIXED in SAS 9.4 to determine break-points on the regression of feed efficiency of
nursery pigs calculated based on the data from 10 published studies (Phase 1 for 5 to 7 kg BW: 14 experiments) and 14 published studies (Phase
2 for 7 to 11 kg BW: 23 experiments). The breakpoints (one-slope broken-line model) were inclusion levels of lactose at 20% during 5 to 7 kg BW
and 13% during 7 to 11 kg BW when G:F were 0.80 and 0.77, respectively. One-slope broken-line models; The equation for G:F during 5 to 7 kg
BW was G:F = 0.80–0.39 × 10− 2 × z1, R2 = 0.90. The equation for G:F during 7 to 11 kg BW was G:F = 0.77–0.24 × 10− 2 × z1, R2 = 0.76 was; if lactose
supplementation is ≥ breakpoint, then z1 = 0; if lactose supplementation is < breakpoint, then z1 = lactose supplementation - breakpoint
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Mode of action of milk carbohydrates benefiting
immature intestine of nursery pigs
Previous studies indicated that milk carbohydrates
played functional roles in intestinal health of nursery
pigsby regulating nutrient metabolism, immune re-
sponse, enterocyte proliferation, and intestinal micro-
biota [7, 74]. However, the functional importance of
milk oligosaccharides has not been discussed thoroughly,
whereas the role of lactose has been highlighted well.
Therefore, the major objective of this section is to review
the published data focusing on the functional effects of

both lactose and milk oligosaccharides on intestinal de-
velopment and health in nursery pigs.
Recently, increasing supplemental levels of milk carbo-

hydrates in feeds improved the growth performance of
nursery pigs during the early postweaning period [7, 10].
The improvement in growth of nursery pigs fed with
dietary lactose could be corresponding to the change of
lactase activity by growth. Ekstrom et al. [15] reported
that the lactase activity in the small intestine of nursery
pigs was linearly decreased by 80% from the birth to 6
weeks of age. Previous studies demonstrated that the

Fig. 2 Changes in G:F of nursery pigs fed diets by average daily lactose intake during 5 to 7 kg (A) and 7 to 11 kg (B) BW using a broken-line
analysis. The meta-analysis is conducted by Proc NLMIXED in SAS 9.4 to determine break-points on the regression of feed efficiency of nursery
pigs calculated based on the data from 10 published studies (Phase 1 for 5 to 7 kg BW: 14 experiments) and 14 published studies (Phase 2 for 7
to 11 kg BW: 23 experiments). The breakpoints (one-slope broken-line model) were average daily lactose intake at 45.61 g/d during 5 to 7 kg BW
and 57.13 g/d during 7 to 11 kg BW when G:F were 0.79 and 0.77, respectively (P < 0.05). One-slope broken-line models; The equation for G:F
during 5 to 7 kg BW was G:F = 0.79–0.12 × 10− 3 × z1, R2 = 0.89. The equation for G:F during 7 to 11 kg BW was G:F = 0.77–0.83 × 10− 4 × z1, R2 =
0.76 was; if average daily lactose intake is ≥ breakpoint, then z1 = 0; if average daily lactose intake is < breakpoint, then z1 = average daily lactose
intake - breakpoint
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reduction of lactase activity could be related to an in-
creased inflammatory response in the intestinal epithe-
lium of the small intestine after weaning [75, 76]. Pié
et al. [75] showed that the lactase activity was decreased
by 60 to 80% in the entire small intestine in nursery pigs
for 8 d after weaning. In particular, proinflammatory cy-
tokines such as interferon-gamma (IFN-γ), interleukin-
1beta (IL-1β), and tumor necrosis factor-alpha (TNF-α)
produced for immune activation could reduce the

production of digestive enzymes in the intestine [77, 78].
According to Jang et al. [7], increasing supplemental
levels of whey permeate from 0 to 18.75% as sources of
lactose and milk oligosaccharides linearly reduced the
lactase activity by 60% compared with 0 whey permeate
with increased IL-8 production in the jejunum of nur-
sery pigs during 7 to 11 kg BW. This may be related to
immunomodulatory functions of milk oligosaccharides
leading to immune activation by binding to the receptors

Table 1 Effects of milk oligosaccharides on intestinal development and health

Model Effects Source Reference

In vitro ↑ Differentiation in HT-29 cells by 36% and HIEC cells by 32% Sialyllactose [96]

↑ Apoptosis in HT-29 cells by 300% and in HIEC cells by 200% Neutral oligosaccharides

↑ Inhibition enteropathogenic E. coli adhesion by 40% to HEp-2 cells HMO [155]

Intestinal microbial colonization
↓ Enterococcus by 88%, Streptococcus by 89%, Veillonella by 42%, Eubacterium by 81%,
Clostridium by 80%, and E. coli by 73%,
↑ Bifidobacterium infantis. by 20% and Bacteroides vulgatus by 24%

HMO [67]

↑ HMO consumption and growth of bifidobacterial strains by maximum 200% HMO [156]

↓ Binding activity of pathogen (Neisseria meningitidis) to carbohydrate receptors by 80% HMO + BMO2 [157]

↓ The release of mucosal proinflammatory signals of IL-8 by 60 to 70% and IL-1β attenuated C.
jejuni invasion by 80 to 90%
↓ Acute-phase mucosal immune response by 50 to 60%

Fucosyllactose [158]

↑ Re-epithelialization of Ca9–22 cells by 86%
↑ Bifidobacterium in infant batch culture by 206%
↑ Bacteroides in infant batch culture by 480%

Sialyllactose [159]

↓ IL-8 secretion by 20% in HCT8 IECs induced by Enterotoxigenic E. coli infection
↓ CD14 transcription and translation cells in E. coli infected mice by 65%

HMO [160]

↑ Cell apoptosis by 20% and necrosis by 56% in Caco-2Bbe cells
↑ Cell differentiation in HT-29 cells by 25%

HMO [161]

↓ Adhesion of E. coli by 25%, V. cholerae by 9%, and S. fyris by 9% to Caco-2 cells HMO [148]

↓ Adhesion of Escherichia coli to intestinal epithelial cells Fucosyllactose + Sialyllactose [162]

↑ Binding with bacterial toxins including CTB5, HLTB5, Stx1B5, Stx2, TcdA2 and TcdB1 with
ranging from 600 to 15,000 M− 1

HMO [152]

Human ↓ Significantly frequency of diarrhea in infants Fucosylated oligosaccharides [163]

↑ Actinobacteria and Bifidobacterium
↓ Firmicutes and Proteobacteria in fecal microbiota

Fucosyllactose and lacto-N-
neotetraose

[164]

↑ Firmicutes in the feces of infants by 250%,
↓ Enterobacteriales infants by 50%,

HMO [165]

Rodent ↑ Abundance of Lactobacillus by 30% in cecal and colonic microbiota
↓ mRNA levels of colonic tumor necrosis factor-α (TNF-α) by 70% in cecum and colon

BMO [166]

↓ Gene expression of TNF-a by 85%, IL-6 by 50%, and IL-1ß by 70% in colon of mice
↑ Gene expression of TGF-ß by 90% and occludin by 95% in colon of mice

Fucosyllactose [167]

Porcine ↑Glutamate dehydrogenase by 44% in the serum Sialyllactose [168]

↓ Diarrhea occurrence by 32% induced by rotavirus
↑ Dry matter contents by 5% of colonic contents
↑ IFN-γ by 25% and Il-10 by 30% in the ileum
↑ Relative abundance of Lachnospiraeae as butyrate-producing bacteria by 100% in colon

HMO [169]

↑ Length of villi by 16% in the ileum
↓ BW loss by 80% induced by E.coli challenge

Fucosyllactose [170]

↑ Il-12 by 300% in the ileum, short chain fatty acids production by 43%, and expression of TLR4
by 40% in the colon

HMO [171]

1Human milk oligosaccharides
2Bovine milk oligosaccharides
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on immune cells or enterocytes in the jejunum. Another
possible action could be associated with the lumen pH
changes in the small intestine by milk carbohydrates
[43] because it has been shown that lactose supplemen-
tation induced an increased lactic acid from intestinal
fermentation, reducing the luminal pH. This could lead
to a favorable condition against pathogenic bacteria [16,
79, 80].
Supplementation of milk oligosaccharides can be one

of the ways to improve the utilization of lactose in the
intestine of nursery pigs. In the studies using a human
model, supplementation of prebiotics could mitigate the
adverse effects of lactose intolerance in human adults
[17, 81, 82]. When the secretion and activity of lactase in
the small intestine are not sufficient and cannot
hydrolyze enough lactose, an undigested portion would
be fermented by colonic bacteria [83]. However, when
the amount of undigested lactose is over the capacity of
colonic fermentation, it would increase the occurrence
of diarrhea by increased osmotic trapping of water and
abnormal intestinal motility, including bloating and
flatulence leading to abdominal pain and diarrhea [84,
85]. Milk oligosaccharides may help increase the capacity
of intestinal fermentation of lactose by modulating the
commensal intestinal bacterial population increasing
beneficial microorganisms [68, 86]. Previous studies have
shown that supplementation of prebiotics could reduce
the symptoms of lactose intolerance by adaptive shifts in
intestinal microbiota [17, 82, 87]. Therefore, supplemen-
tation of milk coproducts providing both lactose and
milk oligosaccharides in nursery feeds would be benefi-
cial for the intestinal maturation and health of nursery
pigs compared with the use of crystalline lactose only.
According to Jang et al. [7], supplementation of whey
permeate in starter feeds improved intestinal develop-
ment and growth of pigs in the early post-weaning
period, indicating that supplementation of whey perme-
ate could have positive effects on preventing jejunal dys-
function in nursery pigs at 7 to 11 kg BW. It was also
reported that milk oligosaccharides could prevent patho-
genic invasion, facilitate the establishment of intestinal
microbiota, improve intestinal development, and stimu-
late immune activation [74]. These observations have
significantly increased research interest in understanding
interactive functional roles and nutritional importance
of milk carbohydrates in intestinal maturation and
health of nursery pigs (Fig. 3).

Enterocyte proliferation in nursery pigs
Intestinal enterocytes are intensively proliferated in
crypts after birth and during the postweaning period to
develop the epithelial structure and recover the epithelial
structure from damages by weaning stress. Thus, crypt
cell proliferation has been used as a marker showing the

status of intestinal maturation, development, or main-
tenance of pigs. According to Jang et al. [88], the pro-
portion of proliferating cells in a jejunal crypt of
neonatal piglets was near 50%, and then the proportion
was decreased by 17% on d 18 of lactation. In addition,
weaning stress is shown to negatively influence physio-
logical functions and morphology of enterocytes in
nursey pigs, causing increased apoptosis, proliferation,
and differentiation that are critical in recovery, develop-
ment, maintenance of intestinal epithelium [89–91]. Ac-
cording to Duarte et al. [92], the oral challenge with
enterotoxigenic F18+ Escherichia coli to nursery pigs in-
creased the proliferation of enterocytes by about 20% in
the jejunum.
Milk oligosaccharides have been known that it can

mainly have two important potential functions: 1) en-
hancement of growth in beneficial bacterial communities
and 2) prevention of pathogen attachment to the intes-
tinal epithelial [93]. In addition, recent papers showed
that milk oligosaccharides could beneficially modulate
the enterocyte proliferation in the immature intestine of
the pigs. Wang et al. [94] demonstrated that milk oligo-
saccharides increased enterocyte proliferation by 60 to
80% in the ileum of mice after the hypoxia exposure for
3 d. Wang et al. [69] further demonstrated that milk oli-
gosaccharides could restore enterocyte proliferation in
the ileum of mice challenged with hypoxia and cold
stress. Hester et al. [95] also reported that high doses of
milk oligosaccharides including fucosylated-
oligosaccharides, lacto-N-enotetaose, and sialylated-
oligosaccharides reduced the stimulated-cell prolifera-
tion by the incubation with nucleotides in the human in-
testinal epithelial cells (FHs-74 Int). In a normal
condition, Holscher et al. [70] showed that incubation
with milk oligosaccharides for 72 h reduced the entero-
cyte proliferation by about 10% in HT-29 culture and by
about 25% in Caco-2Bbe cell culture. Kuntz et al. [96]
also showed sialylated-oligosaccharides reduced the pro-
liferation in HT-29 and Caco-2 cell cultures. However,
there is limited information in porcine studies demon-
strating the effects of milk oligosaccharides on intestinal
maturation and enterocyte proliferation in the small in-
testine. Jang et al. [7] recently showed the increasing
supplemental whey permeate as sources of lactose and
milk oligosaccharides linearly increased the crypt cell
proliferation in the jejunum of nursery pigs.
A possible mechanism for milk oligosaccharides im-

proving intestinal health and development would be re-
lated to their direct binding to relevant receptors on the
enterocytes. Previous studies showed that milk oligosac-
charides possess the ability to bind with toll-like recep-
tors family (TLRs) and epidermal growth factor
receptors (EGFR) on the cell membrane of the entero-
cytes, effectively modulating TLR and EGFR signal
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pathways which are associated with cell proliferation
[94, 97, 98]. It has been known that the various TLRs
and EGFR could play a role in intestinal maturation and
development including enterocyte proliferation, apop-
tosis, migration, and immune response in the intestine
[99–102]. Following a mucosal injury from viral or bac-
terial invasions, stress, or inflammatory response, the
damage-associated molecular patterns (DAMPs), which
are signal molecules released during cell injury, could be
recognized by TLRs and the various signaling pathways
in the intestine, resulting in an increase of epithelial cell
proliferation involved in regeneration [101]. Wang et al.
[69] reported that milk oligosaccharides reduced the ex-
pression of TLR4 by about 50% and the enterocyte pro-
liferation by about 40% in the ileum of mice challenged
with hypoxia and cold stress on d 3 after the challenge.
Good et al. [102] also reported that breast milk signifi-
cantly could reduce the TLR4 signaling with activation
of the EGFR in the enterocytes of mice treated with LPS
challenge. Thus, milk oligosaccharides may inhibit path-
ogens from binding to these receptors, and then

modulate the TLR and EGFR signals in the immature in-
testine, leading to an increase in proliferation.

Immune responses in the immature intestine of pigs
Oligosaccharides have been shown to exert various ef-
fects on the immune system and potentially modulate
immune responses [103]. Recently, functional roles of
prebiotic oligosaccharides in the intestine have been in-
creasingly investigated [104, 105]. Among oligosaccha-
rides, milk oligosaccharides have been shown to have
functional roles influencing the development of the im-
mune system in the immature intestine of pigs [106].
Several studies have demonstrated that the effects of
milk oligosaccharides on innate immunity [107]. In vitro
experiments have shown that administration of
sialylated-oligosaccharides induced greater bacterial
clearance in mice infected with Pseudomonas aeruginosa
strain K and promoted receptor-mediated endocytosis
and phagocytosis [108]. Furthermore, milk oligosaccha-
rides could easily conjugate with various receptors and
oligopeptide carriers in immune cells resulting in

Fig. 3 Overview of the possible functions of milk carbohydrates on the intestine of nursery pigs. Lactose and various type of milk
oligosaccharides could improve the intestinal maturation and health of nursery pigs through positively modulating enterocyte proliferation,
intestinal immune response, and microbiota. (1) Lactose would be hydrolyzed by lactase producing galactose and lactose, which are utilized to
produce energy for the growth and maintenance of nursery pigs. (2) lactose at optimal level could induce a favorable condition against
pathogenic bacteria by microbial fermentation of saccharolytic bacterial groups, including Lactobacillus and Bifidobacterium, leading to preventing
pathogen colonization in the intestine of nursery pigs. In addition, (3) milk oligosaccharides could modulate the growth of intestinal epithelium
through binding to toll-like receptors (TLRs) and epidermal growth factor receptors (EGFR) on the enterocytes. (4) Milk oligosaccharides can
increase gene expression of mucus secretion and prevent the pathogen from binding to intestinal immune-related receptors including TLRs and
various types of glycan receptors, leading to enhanced mucosal immune homeostasis and tolerance. (5) Milk oligosaccharides can prevent
pathogen colonization by increased abundance of Bifidobacterium and production of lactic acid and volatile fatty acids (VFA)
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decreased virus-receptor interactions [109, 110]. Obelitz-
Ryom et al. [111] also reported that the preterm piglets
fed milk oligosaccharides had significantly improved the
phagocytic activity of neutrophils isolated from blood.
These data indicate that milk oligosaccharides could be
a strong immunomodulatory agent in nursery pigs.
Newborn piglets would have a relatively low immune

capacity with low numbers of leukocytes and immune-
modulatory components [112, 113]. Piglets do not have
sufficient defense ability due to undeveloped immune
cells. In addition, weaning stress could potentially cause
the intestinal dysfunction of nursery pigs during post-
weaning period [114]. Thus, the neonates would take up
to 6 weeks to develop a stable immunity in nursery pigs
[114]. Therefore, at the first 2 to 4 weeks of life, pigs are
susceptible to various types of stresses and diseases in
which the intestinal immunity is not mature. The intes-
tine has an important function as an immune barrier
possessing up to 70% of immune cells in an animal body
[115, 116]. As the first line of defense, intestinal barrier
function is considered innate immunity. Firstly, a layer
made of mucin and mucus glycoproteins could be a part
of the intestinal barrier. It can act as a physical barrier
between the lumen and intestinal epithelium. Milk oligo-
saccharides may affect the function of goblet cells in the
intestine. According to Cheng et al. [117], milk oligosac-
charides, especially, 2′-fucosyllactose, 3′-fucosyllactose,
and lacto-N-triaose II, could enhance the mucus barrier
function through increased the gene expression of
mucus secretion including MUC2, TFF3, and RETNLB
genes in the enterocytes under inflammatory and stress
conditions. It is important to note that the structures of
mucin glycans are similar to milk oligosaccharides. It
could be further hypothesized that milk oligosaccharides
modulate intestinal barrier functions by modulating the
composition of intestinal microbiota [118]. Therefore, it
could indicate that milk carbohydrates potentially sup-
port the intestinal barrier by promoting intestinal mucus
secretion.
Secondly, milk oligosaccharides could effectively

modulate the immune functions and ligand specialties
through direct interaction with the various type of pat-
tern recognition receptors such as multiple classes of
lectins and TLRs in the intestinal epithelium or immune
cells [33]. Previous studies have shown that milk oligo-
saccharides could be involved in the expression of vari-
ous TLRs that could bind to the surface molecules of
pathogens in the intestine. He et al. [119] showed that
milk oligosaccharides reduced mRNA level of the cluster
of differentiation (CD) 14 by 40% in T84 intestinal epi-
thelial cells treated for 48 h and then challenged by LPS
compared with the control group. The CD14 is engaged
in TLR-4 signaling and is also a receptor enabling the
recognition of the gram negative pathogenic bacteria on

enterocytes under LPS-induced challenge. Milk oligosac-
charides could suppress the expression of TLR4 by me-
diating the maturation of dendritic cells [72]. It could be
supported by Zhang et al. [97], showing that milk oligo-
saccharides could inhibit the interaction between LPS
and TLR4 by reducing pro-inflammatory cytokines in-
cluding IL-6 and TNF-α in the ileum exposed to hypoxia
and cold stress, leading to an increased 25% survival rate
of rats.
The family of glycan receptors such as c-type lectins,

galectins, selectins, and siglecs could bind to milk oligo-
saccharides on intestinal epithelium and immune cells
[33]. It has been known that lectin receptors are glycan-
binding proteins related to immune response and cell
recognition [120, 121]. Xiao et al. [72] showed that milk
oligosaccharides could mediate the interaction with den-
dritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN) receptors that are c-
type lectins involved in the regulation of the immune re-
sponse in dendritic cells. In contrast to c-type lectins,
milk oligosaccharides can also directly affect the inter-
action of galectins, which are receptors on T cells or
enterocytes, leading to immune regulation of T cell
functions [122]. He et al. [123] also reported that milk
oligosaccharides increased the T-helper 1 (Th1) cells
polarization with improvements in the balance of Th1 /
Th2 lymphocytes in the intestinal mucosa, indicating
that milk oligosaccharides may induce the maturation of
immune response through enhancing the cell-mediated
immune response to pathogen infection in the intestine.
Nursery pigs are susceptible to intestinal inflammation
caused by stress, diseases, or viral infections due to the
immature development and maturation in their intestine
[124, 125]. According to previous studies, milk oligosac-
charides could mediate the immune receptors on im-
mune cells and enterocytes under stressful conditions by
reducing the expressions of TLRs and lectin receptors
[33, 126]. Therefore, milk carbohydrates could positively
support the intestinal immune response of nursery pigs
by interacting with immune receptors on the intestinal
epithelium.

Microbiota in the immature intestine of nursery pigs
The composition and diversity of intestinal microbiota
continue to change as a pig grows [127, 128], which can
also be affected by environmental factors and dietary
factors [129]. Previous studies showed that Lactobacillus
and Bifidobacterium generally dominate the intestine of
breast-fed animals [130–132]. Interestingly, the micro-
bial fermentation by the saccharolytic bacterial groups,
including Lactobacillus and Bifidobacterium, in the in-
testine would induce the production of short-chain fatty
acids, which could affect the intestinal environment fa-
vorable to microorganisms reducing luminal pH [80,
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133]. According to Gahan et al. [43], increasing the sup-
plemental levels of lactose from 60 to 250 g/kg in feeds
linearly decreased the fecal pH of nursery pigs by 11%
on d 15 after weaning. The reduced local luminal pH
could help inhibit the colonization of pathogens living in
the intestinal lumen, feces, or mucosa [134, 135]. Zhao
et al. [58] also reviewed that dietary lactose could be fer-
mented by intestinal microbiota resulting in the produc-
tion of lactic acid and short-chain fatty acids, conferring
prebiotic-like effects on intestinal microbiota. Previous
studies have also shown that supplementation of dietary
lactose resulted in modulation of the abundance of spe-
cific microflora, including Lactobacillus [7, 136], E. coli
[45], and Bifidobacterium [137].
Frese et al. [138] also showed that milk oligosaccha-

rides could help establish the intestinal microbiota in
nursery pigs. Jang et al. [7] reported that increasing the
supplemental levels of whey permeate from 0 to 18.7%
increased the abundance of Bifidobacteriaceae by 41%
and showed the quadratic effects on the abundance Lac-
tobacillaceae showing increasing by 31% at 13% whey
permeate in the jejunum of nursery pigs during 7 to 11
kg BW. It could indicate that milk carbohydrates could
positively modulate the mucosa-associated microbiota of
nursery pigs. In addition, these saccharolytic bacterial
groups could effectively utilize milk carbohydrates,
resulting in the production of abundant short-chain fatty
acids including butyrate and lactate mediated by Bifido-
bacterium and Bacteroides groups [139, 140]. Short-
chain fatty acids have been shown to be essential energy
sources for intestinal development and effective immune
responses [130, 131]. Specific enzymes such as fucosi-
dase and neuraminidase that hydrolyze milk oligosaccha-
rides have been found in saccharolytic bacteria and these
enzymes have specific functions in microbial growth and
short-chain fatty acid production [140, 141]. However,
so far, information on these potential beneficial impacts
of milk oligosaccharides on intestinal fermentation has
been elucidated through clinical trials mainly focusing
on the colon in humans or in vitro studies for pigs. Pigs
could effectively utilize the milk oligosaccharides for in-
testinal microbial fermentation due to enormous differ-
ences in the relative size of the intestine compared with
human. Pigs have well-developed cecum where intestinal
microbiota would ferment a part of carbohydrates before
entering the colon and their cecum is significantly larger
than humans [142]. It has also been known that the con-
tribution of short-chain fatty acids to maintenance en-
ergy requirement through microbial fermentation is
about 10% in humans and 20% in pigs [143, 144]. There-
fore, milk oligosaccharides could display great potentials
to be effectively for the production of short-chain fatty
acids by microbial fermentation in the intestine of nur-
sery pigs.

In addition, milk oligosaccharides could provide anti-
adhesive effects on intestinal pathogens, which use cell
surface glycans to recognize and bind to the target cells,
leading to pathogenesis [145, 146]. This may be due to
milk oligosaccharides possessing structural similarities to
cell surface glycoconjugates utilized by intestinal micro-
biota [145]. Additionally, it has also been known that oli-
gosaccharides can be involved in cell recognition and
signaling, specifically in microbial adhesion and micro-
bial interactions between the intestinal epithelial cells
[147]. According to previous studies, milk oligosaccha-
rides could not only inhibit binding of the pathogens
such as E. coli [148–150], Helicobacter [151], and Sal-
monella [148], and microbial enterotoxins [152], but also
significantly promote the adhesion of Bifidobacteria to
intestinal epithelial cells [153, 154]. Walsh et al. [68]
demonstrated that milk oligosaccharides-containing
products could potentially increase the residence time of
probiotic bacteria in the intestine leading to improved or
sustained intestinal health.

Conclusion
Milk carbohydrates are essential to support the growth
and intestinal health of the pigs, especially during early
stage of life when the pigs are vulnerable from enteric
diseases or stressful conditions negatively affecting the
intestinal health. Although lactase activity is high in their
early life, it is important that feeding proper amounts of
lactose in early weaner feeds because if feed too high, it
can cause abnormal intestinal functions from extensive
lactose fermentation, unbalanced osmosis, or abnormal
motility. Based on the meta-analysis of published data, it
would be recommended that pigs at 5 to 7 kg BW (typ-
ical early weaner feeds) need 20% lactose (or 45.6 g/d in-
take), pigs at 7 to 11 kg BW (typical pre-starter feeds)
need 13% lactose (or 57.1 g/d intake). Milk carbohy-
drates as bioactive compounds play a critical roles in im-
proving intestinal maturation and health of nursery pigs
through positively modulating enterocyte proliferation,
immune response, and microbiota. Milk oligosaccharides
promote the utilization of lactose by positive modulation
of immune responses and composition of intestinal
microbiota in young pigs. Based on the current know-
ledge and research, it is warranted to further investigate
whether milk carbohydrates can have specificity of pre-
biotic effects depending on the types, ratio, or combin-
ation status.
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